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Abstract. We mvestigate by Monte Carlo simulations the thermodynamic behavious of ¢
izear heteropolymer 1 which the interaction between different monomers contains a
guenched random component We show the existence, along with the usual coil and globule
phases, of a new folied phase, charzcterized by long .2laxation times and by the existence
of few stable states

1. Introduction

Proteins are a fascinating subject (.« refer {or example ta [1-7] for various approaches
to the many sides of the problem}. Proteins are very elegant and muliifunctional entities,
large and complex en the scale of their fundamental constituents, but very simple of
regarded on the scale of the structures they eventually consutute {for example ammal
bodies).

Protein folding 15 cne of the essential and most interesting features. Biologically
active proteins are in a folded siate. a globular state with a precise shape, characteristic
of the given protein. The information about folding (i.e. the 5 stable structure of a
working protein) is contained in the flinear sequence of the messenger rya: there is
no space for explicit codwug of the 30 structure, which must be determined from the
interaction laws of the constituent amino-acids. The given seguence of amino-acids,
which eveniually constituies the working protein, is coded in the ’Rna. the different
amine-acids have different interactions, and interact in a different way with the solvent

Folding is certainly 2 complex and quite mysterious procedure. The timescales
invelved in the problem are very different folding umes vary a lot. but the timescale
is much longer than that needed for a steepest descent to a simple minimum, and too
short (obviously} for an exhaustive search of the configuration space, One or a very
few allowed folded states charactenize 2 given, biologicaily active, protein.

The fact that one can nope to understand some features of such a probiem on the
basis of first principles and of a universal behaviour is attracting the attention of
physicists We want to understand what the mechanism is that allaws such a crucial
process ic work, We want eventual'y to be able to build the native configuration using
a physically relevant approach (for an essay in this direction see [8]): in other words
we want to try to understand which are the relevani mechanisms (that have to be very
stable and simple) used by nature :n the process of folding.
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Physicists are used to approaches based on the idea of universality: relevant
mechanisms are often independent of the details of the interaction laws, and just
depend on very general features of the problem (for example, the symmetries of the
problem). Critical phenomena, which occur in the transition between different regimes,
depend only on such general features: only very specific features (like the value of the
critical temperature) depend on the details of the interaction. Protein folding is an
exquisite candidate for such an approach. It is clear to us that real proteins are the
products of natural evolution and they are nof random sequences of random interacting
amino-acids. It is, however, extremely interesting to undersiand which properties
proteins share with generic random heteropolymers, and in contrast which of their
properties are selected by natural evolufion: such a study has to be started by invastigat-
ing in detail the behaviour of random heteropolyimers.

The time iz ripe for starting such an enterprnise. Much crucial progress has recently
been made in studies of complex sysiems [9]. Starting from the specific example of
amorphous raterials, and soon generalized to very different situations, 2 whole new
formalism, the mechanism of replica symmetry breaking, has led to many new results.
In recent months maity results have been obtained for the behaviour of membranes
11 random potentials [10].

Such an approach seems crucial in order to try to apply ideas concerning disordered
systems to the description of protein folding. Indeed if random spin systems have their
own typical features (which characierize, for example, phases that cannot be found
in wspal, non-random spin medels), random membranes share some of these new
features, but are in some sense different, and this difference can be quite crucial. For
example, it would be difficult o match the structure of states of a Sherrington-
Kirkpatrick infinite range spin model (and also of a random energy model, see for
example the iniroduction and the reprinted papers contained in [9]) with what one
knows about protein folding. The many completely disconnected minima in these
models do not match with proteins that always appear to be in one of few allowed states.

In this paper we will see that umportant features that have been noted in the
approach of [ 10] can be explicitly found during the numerical simulations of an N =30
heteropolymeric chain. We find, along with the usual coil-glsbule phase transition, a
new folded phase, wlich seems suitable io describe protein folding as a generic
phenomenon. We will see that ns features match very well many of the intrigning
features of the protein folding dynamics: we have breaking of ergodicity and very long
timescales, and few stable states in which the chain folds. We will relate the existence
of such a phase to the presence in the system of a sirong, quenched disorder.

We refer to the work of [11, 12] for connections between disordered systems and
protein folding. In [13-16] a mean field treaiment for heteropolymeric chains has been
eiaborated.

In this paper we will present our first results, describing the phase diagram of the
model and giving the first conclusions about the structure of stable states. We are
developing a more detailed analysis which will be presented in a forthcoming paper [17].

2. The model
Let us start by defining the Hamiltonian of our model We consider N sites of a chain

{they will be identified, in the protein analogy, with sequences of amino-acids). Their
position i continuune 3D space 15 characterized by the three values of the coordinates
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¥, where in tne following Latin indices 4,1, iabel the sth site of the chain, and
Greek indices g, ¥, .. iabel the tnrez spat:al directions (only those from g an in the
aiphaber, since we will use @ f3,... to label the copies of the chain we encounter in
the conrse of the Monte Carlo dynamics)

We define the Cistance beiween two sites of the chain by

/7
\ Z (= ~x”}) (1)
and the energy between two sites of the chain is
R 4 1
E =8, +1rr1+ 27 6 +E§J- (2)
r*u r‘-} Ly

The hammonic term couples first neighbours on the chain. The deterministic part
of the poteniial hes the usual Lennard-Jones form. The mzin difference from a usual
homopolymer 15 given by the quenched 1/r° contribution. The quenched part of the
potential has a zero expectation value {we have explicitly written an attractive deter-
ministic contribution, whicn we will call the A term, 1 the definition of the couple
enetgy (2}

{0 =0 (2)
it is syme.cteic {n,,=n,) and has a correlation of the form

(. W)= &8, e )
that ic - ifi=j and k=! ¢or if =1 and j=£ This effective random
intersr . in the biological picture, many different factors: the complex
interaeliv . - .+ different groups of different annno-acids, the effect of the solvent

(typically wati-. inzlecules), ete,
The Hamiltonian is defined as

~
H=%} 2 E,; (%)

=3 gy

and the model is brought to thermal equihbnum under the Boltzmann distribution
e 7" where 8=1/7. In the following we will try to reach a good undersianding of
the role of the diverder (given by the quenched random potential) and of the Lennard-

Joaes interaction on the chain.

The determunistic part of the potentiat had a mmmple form. The harmonic term, with
a first neighbour interaction on the chain, kesps the chain together. The repulsive R
term forbids the collapse of the chain, and the attractive A contribution allows the
chain to I'old The choice of a Lennard-Jones form is a convenient, well understood
emer oiher choices of the exponent are gbviously possible and we tend to believe that
the qualitative benaviour of the model should not change as long as the potentials go
sutficiently fast to zero at infinity. We could also have chosen an exponentially damped
interaction, but we have not done so for practical numerical reasons.

in ihe absence of the random guenched term we are dealing with a homopolymer,
and we expect the uzual coil-globule transition. The globule staie of a homopolymer
has no definite shape, A quenched disorde: could ailov ‘and we will show it doss)
the formation of » globular phase with a dednite, frozen shape' we would be dealing
with a closed gicuule, in which the positions of the slementary parts of the chain are
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definite and fixed. This kind of phase (which we will call folded 1n the following)
would be swmitable 1 order to describe protein folding,

3. Dynamics and overlops

We use a local Monte Carlo dynanucs: we propose a local updating move for a given
hink of the chain, and we accent or reject the pronosed update with the correct

Lila faR Lt} bl 06 Iogbbd 1210 PIODLRUS PR 1t i WL

probability, We always keep the acceptance ratio {1 e. the percentage of accepted
updates) to 50%. According to popular belief such & choice almost optimizes the
efficiency of the simulation.

In order to understand the structure of the equilibrium states of the model (stable
and metastable siates), we want to use the concept of overlap. The physical interpreta-
tion of the replica approach suggests that we sheuld study the differerices between the
configurations we encounter in the cowse of the Monte Carlo dynamics we use to
sample the equilibrium probability distribution Let us call @ and § two configurahions
tha, we have generated In defining their distance we have to remember that there 1s
a rotational and translational motion that is not relevant for defining a distance: we
are interested in a parameter that measures differences in shape. We want to know of
we find a structure 1 a chain shape, and we want to be able, for example, to distinganish
between a closed shapeless globule and a {rozen well shaped structure. In order to do
that we define

1 N 3
Blam=7 L L {x( -y (6)
NIy uo

after taking the mmimum over ioto-translations. In practice we bring proiein 8 over
protein o(overlapping the two barycentres), and then we find the optimal rotation of
B which minimizes 8,4,

Such a defimtion of overiap is by no means umque. We also use a completely
different distance, which does not need the minimization procedure In this case we
use the energy of the site couples in order to define

A — § SHES-ESY {7)
(e, B I‘I(N 1)[_1 e hi
where E\5' is the site energy (2) of the configuration (a).

The definition {6) is very natural, 1n that it identifies the physical similarities of
two configurations of the same chain (when we say the same chain we mean that we
are 1 the same rezlization of the random guenched potential a given preiein is
characterized by the sequence of the amino-acids, and sequences of such elementary
constituents do interact in a defimite way). Once we have eliminated the rotational and
the transiational degrees of freedom we are left with an indicator which is zero if the
two proteins are identical.

The problem with defimtion (8) comes if one part of the two chains 1s vetv similar
and another part is completely different (which usuvally happens during the folding
procedure, when the foldmg is not yet completed) In this case the first distancs could
be completely misleading, and one could find, by overlapping the contres of the two
configurations, a compietely spurious position. Here definition (7) can help, sinze it
locaily recogmzes part of the two chains which are in a similar energetic state. In our
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simulations we always find the same answer when looking at the two distance indicators:
we consider this as being a very good consistency check, which shows that indicators
(6) and (7) are really measuring the intrinsic similarity of two different chains.

The parameters that characterize our modet are the number of elementary sequences
(sites of the chain) N, the atiractive coefficient A, the repulsive coefficient R, the inverse
temperature 8= T~ and the strength of the quenched disorder, &.

The different parameters we have descnbed are deeply interconnecied In our
numerical sitnulations we have mostly fixed 8 =1, and studied the phase diagram in
A for different vaiues of the noise £: the repulsive coefficient K has been fixed in such
a way as to match the scale fixed by the temperature. We have tried some runs wiih
B =2, and they have confirmed the 1dea that a rescaling in 8 roughly corresponds teo
a rescaling in the other parameters.

Most of our runs {apart from exploratory ones, in which we have varied R) have
been done with R=2, and N =30 sites on the chain We have done some runs with
N =60 and some with N = 10 and N =20 in order to get information about the scaling
laws of the sysiem.

Apart from the overlap distances we have measured some iocal observable quan-
tities We have measured the expectation value of the energy of the system

E=(H) {8)

where by (-} we mean the thermal average over configurations in a given realization
of the random potential (we indicate the average over different instainces of the random
potential by =. most of the time we will discuss results obtaned in a given realization
of \he potential, because this is the real problem we are eventually interesied in). We
have monitored the gyration radws

N 7 3 2
PE<Z (E (-‘«’?"(x“))“) > (9)

1= pm=1

and the link length

(2 ()

The coil-globule phase transition s characterized by a sudden jump in p when
varying A at fixed R (and low &),

The model we are discussing hers turns out to have a very rich structure- 1t is quite
casy to implement, and the two definitions of chain-distance we have given allow us
to extract a tot of additional relevant information. Another possible approach consists
in defining the protein on the latiice (in this case the main advantage is the large
computationai speed one can reach, and the relative ease of an operational definition
of a chain-distance), but the continuum approach turns out, as shown by the results
wi discuss in this paper, to be very effective.

4, Mumerical simulation and resnits

Let us start by summarnizing our results. In absence of the noise (homopolymer) we
obseive, when increasing the coefficient of (¢ attracrive contriburion A; 2 {well known)
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phase transition from an open coil state to a globule shapeless phzse For low quenched
noise the situation does not change. In the strong noise regime we get an abrupt
transition to a completely different phase.

We start our simulation without the random part of the potential {s=0), with
N =30. We have set £=1 and R=2, in such a way to get values of p/N and A of
O(1) for A=0. We compute the relevant quantities for different values of A. In figure
1 we give p” as a function of A, and in figure 2 we give A°. The change of regime from
a coil phase at small 4 to a globular phase for large A is clear, around A=2.

In the coil phase the square of the gyration radius behaves as A, while 1n the
globule phase it behaves as N'%. Such a criterion allows a good empirical definition
of the transition pomnt. In contrast we will see that the frozen phase is characierized
by a non-trivial structure in the probabiiity distribution of the distances.

The probability of a given chain squared distance, P(8%), is defined as the normalized
number of times that, dunng the course of the Monte Carlo dynamics, two protein
chamns are at distance 8 {we pick out one configuration ip 10* and we compute the
distances of all possible couples). It turns out to be the probability distribuiion one
expects 11 a normal! (rephca symmstnc} phase: we plot it in the coil phase wn figure 3
for A=1.6 and in the globuie phase, for A =338, in fizure 4 We cannot distinguish
any kind of structure, in the sense that the P are in this case the usual single-peaked
distributions. In the open phase the probability disiribution has a tail for large values
which is probably connecied to finctuations 1 the radius p, which we expect to be
much larger 1n the coil phase than 1n the giobular one. Such a tail is consistently absent
in the globular phase.

We have done simulations for a few different reatizations of the #,,. The results
for small values of ¢ are quantitatively very sumilar to those with £ = 0. Fluctuations
from one instance of the potential to a different one are very small, and the statistical
errors ont the measured guantities can be reliably measured (we use a jack-knife
technigque in order to control the convergence of our error estimators).

Increasing the strength of the disorder (at fixed 8 and R) we find, close to a given
value of £ = ¢, a transition to a new phase, completely different in character from
those we have discussed berfore, Such a phase has all the typical features of a frozen
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phase in 2 spin glass, plus seme bonuses we will discuss in the followmg, that make
it very suitable to describe the state of a folded, biologically active proiein.

The correlation time in the glassy phase is exiremely large (we are not able to
determine it}, and the jump from the two phases (coil and shapeless globule} with
reasonable correlation times to the new phase is very abrupt. The P(5%) in the new
phase is non-trivial, and we can observe the system surviving in a given state for very
long times. We pive a typical example (after a very long run of =2x10° complete
chain updating sweeps) of P(8%) in figure 5. In this and n the following figures N = 30,
£=6.0 and A=23.8. The dstribution P{8°) has a first peak at a very small value of 6,
typical of two chain-configurations that are 1n the same state, and are very similar.
The other part of the distribution corresponds to confisurations which are macroscopi-
cally different: 8 is non-negiigible compared to A.

et us discuss in some detail the dynamics in the glassy phase. In fizure 6 we give
p” as a function of the Monte Carlo time, and in figure 7 the link squared length A2
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Already at such a very rough level (we will see inhat using out chain-distance criteria
we can gather far more detailed information) we can see very long-lived structures.
The macroscopic jump 1o the radius survives for the order of 20 million Monte Carlo
sweeps.

in the series of figures 8 we give the squared distance 87 of the protein chains we
have encountered in the course of the dynamics from the specific chain we indicate
by drawing a vertical line on the selected time. We compute the chain-distance §” from
tie considered chain to ail the chams preceding it 1n the (Monte Carlo) time and to
the chains following it. Obviously the distance is zero at the point specified by the
vettical line, i.e. the cham-distance of a protein with itself is zero® small § means the
two configurations are in a similar state, large & they are in a different state, We warn
the reader that these figures have to be undersiood in detail, since they constitute the
main point of this work. All the features we noie m figure 8 weuld persist when looking
at the same figures done for the A chain-distances {(based, as we have seen, on site
energy differences).

Figure 8(a) gives the squared distance 8° from the chain obtamed after 15 milli
fterations. The chain is at this moment in a siable state: we see frorn this figure that
the cham will returi (twice) to the same state after more than 50 milion Monte Carlo
iterations We can see that at the start we are very far from thermal equilibrium (at
the beginning the protem is in a transient state, at a large distance from all the
equihibrivm confighrations), and after a while (as we saxd 15 million Monte Carle
sweeps) we see the chain from which we have decided to measure the distance §

Before 20 million iterations (figure 8(b)) the chamn goes into a long-lived state
{which lasis O{20x 10°) iterations) where it will not return during the entire run. In
figure 8{c) the chain is in its second stable state, where it spends more than 45 million
Monte Carlo iterations. It should be noticed that the chain i visiting this state for the
second time, and that it will come back to the same state once more.

In figure B{d) the cham is back to the first state. In fgure 8(e) it is 1 a transient
state: from figure 6. where we have given the gyration radius p* as a funciion of the
Maonte Carlo tune, we see that such a state is macroscopieally different from the others,
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and it is characierized by a different value of p In fAgure 8(f') the chain 1s back (for
the third ume) to the second state.

A good way to proceed is to compare the chain-distance § and the link length A:
in a globule shapeless state the typical value of 8 is larger than the distance between
two chain sites. In contrast, in a well folded, weil shaped phase § is very small {on
the scale fixed by A) for ail the time in which the protein is in the same state,

The main guestion is about the minima of the free energy. From figures 8 it is clear
that there is, as expected, & very complex structure. There are few stable states (we
see at least two different states in which the chain comes back after many iterations).
The most important point 15 perhaps that there are few stable states: the fact that after
many Monte Carlo 1terations, and after visiting a completely different state (see next
paragraph}, we come back to exactly the same state, 1s very remarkable, and is a feature
that 1s quite different from the pattern of stable state in disordered spin models (the
recent work of [10] points in this direction).

Proteins fold in one or very few stable states the behaviour of the glassy phase
one encountess in a spin model {or in the randoin energy model) would not be consistent
with such a phenomenon. In order to explain protemn folding by the effect of disorder
cne has to find few stable structures. this is what we have shown to happen for
heteropolymers in random, strong enough disorder.

In figures 9 we give the conformational pictures of proteins selected at the time-
pomnts from where we take the distance in figures 8. So in figure 9(a)} we have the
protein from which we take the distances in figure 8(4) and sc on (we mive the three
projections on the x-y, x-z and y-z planes: the fgures are after minimization of &
over roto-translations, i.e. the projections are, at least in principle, as similar as they
can be). it is remarkable that the two states (which we consider siable states, since the
chain finds them again afier billions of Monte Carlo steps) are conformanonally
completely different. It 1s very impressive how figure 9(e) is similar to figere 9(d), and
figure 9(c) to figure 9(f): the intermediate configurational states are completely
different, but the chain comes back, after many million Monte Carlo iterations, to the
same configuration

We have given evidence for the existence of a glassy phase in the dynamics of
beteropolymers. We have shown that such a phase has typrcal features which are
different from those of a disordered spin model, and are due 10 the chain-like features
of the model, and that such features are exactiy what one needs in order to apply such
a model to the description of the dynamics of protein folding. In a forthcozaing paper
we will give some more information about the structure of the fiee encrgy minima:
we will discuss how the states cluster, and the possibility of applying an ulirametric
description to the states,
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