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AbjPnet. We mrert!gate by Monte Carlo simuktmnr the thermodynm” behzvmui cf d 
linear ticteiopolymer 15, which the ~nterzction between diiierent monomeis contains a 
quenched condom component We show the existence, along with the usual col1 and globule 
phases, of a newfoliedphnse, charanenzed b? long .:lahatlon times and by the existence 

of few stable states 

1. Introduction 

Proteins are a fascinating subjert ( %IJ vefer for example t~ [l-71 Cor various approaches 
to the many sides of the p-oblem). Proteins are very elegant and multifunctional mtities, 
large and compir-t on the scsle of thetr fundamental constituents, but very simple if 
regarded on the scale of :he stmctures they eventually conatttute (for example animal 
bodies). 

Protein folding is m e  OF the essential and most interesting features. Biologically 
active proteins are in a folded state. a globular state with a precise shape, characteristic 
of the given protein. The information a b u t  folding (i.e. the 50 stable structure of a 
working protein) is contained in the linear sequence of the messengei RNA: there is 
no space foi explicit codlng of the ;D structure, which must be determined from the 
interaction Iaws of the constituent amino-acids. The given sequence of amino-acids, 
which eventually constitutes the workinp protein, is coded in the RXA. the different 
amino-acids have diiferent int?ractions, and interact in a diiferent way with the solvent 

Folding is certainly a complex and quite mysterious procedurp. The timescales 
involved in the problem are very diiferent folding times vary 3 lot. but the timescale 
is much longer than that needed fa; a steepest descent to a simple minimum, and too 
short (obviously) for an exhaustive search of the configuration space. One or a very 
few allowed folded state3 charactenze a given, biologicaily active, protein. 

The fact that one c2n nope to understand sone  features of such a problem on the 
basis of first principles and of a universal behaviour is attracting the attention of 
physicists We want io understand what the mechanism is that all3ws such a crucizl 
process t(i work. We want eventual!y to be able to build the native configuration using 
a physically relevant approach (fo? an essay in this direction see [SI): in other words 
we want to try to understand which are the relevant mechanisms (that have to be very 
stable and simple) used by nature :n she process of folding. 
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Physicists are used to approaches based on the idea of universality: relevant 
mechanisms are often independent of the details of the interaction laws, and just 
depend on very general features of the problem (for example, the symmetries of the 
problem). Critical phenomena, which occur in the transition between different regimes, 
depend only on such general features: only very specific features (like the value of the 
critical temperature) depend on the details of the interaction. Protein foldmg is an 
exquisite candidate for such an approach. It is clear to us that real proteins are the 
products of natura: evolution ar.6 they are not random sequences of random interacting 
amino-acids. It is, however, extremely interesting to understand which properties 
proteins share with generic random heteropolymers, and in contrast which of their 
properties are selected by natural evolution: such a study has to be started by inv%tigat- 
ing in derail the behaviour of random heteropolymers. 

The time is ripe for starting such an enterpnse. Much crucial progress has recently 
been made in studies of complex systems [91. Starting from the specific exampie 3: 
amorphous materials, and soon generalized to very different situations, a whole new 
formalism, the mschanism of replica symmetry breaking, has led to many new results. 
In recent months maiiy results have been obtained for the behaviour of membranes 
in random potentials [lo]. 

Such an  approach seems crucial in order to try to apply ideas concerning disordered 
systems to the description of protein folding. Indeed if random spin systems have their 
own typical features (which characterize, for example, phases that cannot be found 
in usual, non-random spin models), random membranes share some of these new 
features, but are in some sense different, and this difference can be quite crucial. For 
example, it would be difficult 10 match the structure of states of a Shemngton- 
Kirkpatrick infinite range spin model (and also of a random energy mode!, see for 
example rhe introduction and the reprinted papers contained in [SI) with what one 
knows about protein folding. The many completely disconnected minima in these 
models do not match with proteins that always appear to be in one of Cew allowed states. 

In this paper we will see that important features that have been noted in the 
approach of [ 101 can be explicitly found during the numerical simulations of an N = 30 
heteropolymeric chain. We find, along with the usual coil-glGbule phase transition, a 
new folded phase, which seems suitable to describe protein foldmg as a generic 
phenomenon. We will see that 11s features match very well many of the intriguing 
features of the protein folding dynamics: we have breaking of ergodicity and very long 
Zimescales, and few stable states in which the chain fool&. We will relate the existence 
of such a phase to the presence in the system of a strong, quenched disorder. 

We refer to the work of [ll, 121 for connections between disordered systems and 
protein folding. In [13-161 a mean field treatmsnt for he:eropolymeric chains has been 
elaborated. 

In this paper we will present our first results, describing the phase diagram of the 
model and giving the first conclusions about the structure of siahle states. We are 
developingamotedeiailed analysis which willbe presented in afosthcomingpaper[I71. 

2. The model 

Let us start by defining the Hamiltonian of our model We consider N sites of d chain 
(they will be identified, in the protein analogy, with sequences of amino-acids). Their 
position in continttun: 3~ space is characterized by the three values of the coordinates 
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r:, where in me iollowing Latin inrlices i,:. , , label the iirh site of the chain, and 
Greek indices p, U, . . tabel the tnr?? spatial diyections ioiily those f:om 15 an in the 
aiphabar, since we wd: use a. 0,. . . to label :he copies of the chain we encouTter in 
the covree cf thc -Monte Carlo dynamics) 

We define the &stance hetwean two sites of t!<e chair! by 

and tke energy between two sites of the chain is 

The ha-moric term couples first neighbours on the chain. The determiiiistic part 
of the putential hes the usual Lennard-Jones fsrm. The m& difference liom a usual 
hrmopolymer IS given by the quenched 1 f r6 contribution. The qdenched p a s  of the 
potential has a zero expectation value (we have explicitly written an attractive deter- 
ministic c,ntribution. whicn we will call the A term, in the definition of the couple 
e n e i g  (2)J 

(T),,,) = 0 (?) 

( nt T i  i) = 4,,,m> (4) 

if i = j and k = I or if I = i and j = k This effective random 
in the biological picture, many difierent factors: the complex 

. . , iifferent groups of different anuno-acids, the effect of the solvent 

ir is syma.=tric (ql,, = q,,2) and has a correlation of the form 

rhat ic 
intera, 
interach ' .  
(typically wai:: udecules), etc. 

The Hamiltonian is defined as 
N 

fz = c c E,, (5) 
1 - 1  I>'  

3nd the model is brought to thermal equilibnum under the Boltzmann distribution 
e-3H, where p = I/ T.  i n  the following we %vi11 try lo reach a good urderstanding of 
the role orthe diborder (given by the quenched random potential) 2nd of ihe Lennard- 
Jo.ies interaction on thz chain: 

The detemmistic part of the potential had a eimple form. The harmonic term, with 
a Erst neighbour in?cractmn on the chain, keeps the chain together. The repulsive R 
term forbids the collapse of the chain, ani the attractive A contribution allows the 
chein to fold The choice of a I ennard-Jones foxa is a convenient, well understood 
m e  ocher choices of ihe expontnt are obuioas:y possible and we tend to believe that 
the qualitative benaviou: of the rnodel should not change as torg as the potentials go 
su&cientlv fasl to zero at infiniiy. We could also hase chosea an exponeutial!y damped 
interaction, bot rye have not done so for p-azical numzricai relsons. 

In the absence of the random quenched irrin w e  are dealing wlth a homjpolymer, 
and we expect t k  usual coil-g!obuk transitisn. The globule state of a homopolymer 
has no definite dape. h queiicked disordei could allo-v '2nd we wiil show it does) 
ihe formation CF i globular phase with a deSnice, frozen shapr  we would be dealing 
%ith a closed g l ck le ,  in which the positions of the e:ementary parts of the chain are 
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definite and fixed. This h n d  of phase (which wz will call jolded in the followingj 
would be suitable in order to describe protein folding. 

3. Dyaamics and overlaps 

We use a local Monte Carlo dynamics: we propose a local updating move for a given 
!mk of thc cha!n, and we zccept or reject the proposcd upd&te with the ccrrsct 
probability. We always keep the acceptance ratio (i e. the percentage of accepted 
updates) to 50%. According to popular belief such a choice almost optimizes the 
efficiency of the simulation. 

In order to understand the structure of the equilihnum states of the model (stable 
and metastable states), we want to use the concept of overlap. The physical interpreta- 
tion of the replica approach suggests that we should study the differences between the 
configurat;ons we encounter in the couise of the Monte Carlo dynamics we use to 
sample the equilibrium probability distribution Let us vall a and p two configurations 
thzr we have generated In defining their &stance we have to remember that there is 
a rotational and translational motion that is not relevant for desning a distance: we 
are interested in a parameter that measures differences in shape. We want to know If 
we find a stmcture in 2 chain shape, and we want to be abte, for example, to distinguish 
between a closed shapeless globule and a frozen ne11 shaped structure. In order to do 
that we define 

after taking the minimum over ioto-translations, In practice we bring protein p over 
protein a(over1apping the two bdrycentres). and then we find the optimal rotation of 
p which minimizes 8 , ,p i .  

Such a definition of overlap is by no means unique. We also use a completely 
different distdnce, which does not need the minimization procedure in this case we 
use the energy of the site couples in order to define 

where E:;’ is the site energy ( 2 )  of the configuration (a). 
The definition ( 6 )  is very natural, in that it idenlifiss the physical similarities of 

iwo configurations of rhe same cham (when we say the same chain we mean that we 
are in the same realization of the random quenched potential. a given proteic is 
characterized by the sequence of the ammo-acids, and sequences of such elementary 
constituents do interact in a definite way). Once we have eliminated the rotational and 
the trnnsiational degrees of freedom we are ierr with an indicator which is zero if the 
two proteiiis are identical. 

The problem with definition ( 6 )  comes if one part of the two chains IS verv similar 
and another part is completely d5fferent (which usualiy happers d:iring the folding 
procedure, when the folding is not yet completed) In  this case the first distance could 
be completely misleading, 3r;d one could find, by overlapping ths c,:ntres of the two 
configurations, a compktdy spurious position. Here dcfinltion (7) car. help, sinre it 
locdily rzcognizes Fari of the two chains which are in a similar energetic state. In 0111 
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simulations we always find the same answer when looking at the two distance indicators: 
we consider this as being a very good consistency check, which shows that indicators 
(6) and (7) are really measuring the intrinsic similarity of two different chains. 

The parameters that characterize our model are the number of eiementary sequences 
(sites of the chain) N, the attractive coefficient A, the repulsive coefficient %the inverse 
temperature p = T-' and the st:ength of the quenched disorder, E.  

The different parameters we have descnbed are deeply interconnected In our 
ncmerical simulations we have mostly fixed p = 1, and studied the phase diagram in 
A for different values of the noise E :  the repulsive coefficient R has been fixed in such 
a way as to match the scale fixed by the temperature. We have tried some runs with 
p = 2, and they have confirmed the idea that a rescaiing in p roughly corresponds to 
a rescaling in the other parameters. 

Most of our runs (apart from exploratory ones, in which we have varied R )  have 
been done with R = 2, and N = 30 sites on the chain We have done some runs wits 
N = 60 and some with N = 10 and N = 20 in order lo get information about the scaling 
laws of the system. 

Apart from the overlap distances we have measured some local observable quan- 
tities We have measured the expectation value of the energy of the system 

E = ( H )  (8) 

where by (.) we mean the thermai average over configurations in a given realizarion 
of the random potential (we indicate the average w e r  different ins:aiices of the random 
poiential by 7 .  most OF the time we will discuss results obtained in a given realization 
of iile potential, because this is the real Droblem we are eventually interested in). We 
have monitored the gyration radzus 

and the link h g ? k  

The coil-globule phase transition is characterized by a sudden jump in p when 
varying A at fixed R (and low E ) .  

lne modei we are discussing here turns out to have a very rich struczure' It is quite 
easy to impienent, and the two definitions of chain-distance we have given allow us 
to extract a lot of add~tional relevane information. Anorher possible approach consists 
in defining the protein on the lattice (in this case the main advantage is the large 
computationai speed one can reach, and the relative ease of an operational definition 
of a chain-distaxe), but the continuum approach turns out, as shown by the results 
uv discuss in this paper, to be very effective. 

- 

4. Numerical simulation sod remits 

Let ns start by summarizing our results. In absence of the noise (homopolymer) w e  
obseive, ?.hen increasing the coeriicient of t te  attracrive contribution A; a (weil known) 
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phase transition from an open coil state to a globule shapeless phzse For low quenched 
noise the situation does not change. In the strong noise regime we get an abrupt 
transition to a completely different phase. 

We start our simulation without the random pan of the potential ( E = O ) ,  with 
N = 3 0 .  We have set ,8 = I  and R = 2 ,  in such a way to get values of pji? and h of 
Ofl) for A=O. We compure the relevant quantities for different values oi A. In figure 
1 we giye p 2  as a function of A, and in figure 2 we give A2. The change OF regime from 
a coil phase a: s z d l  A :a a g!oSa!a: phase for largs A is dear, axiiiid A = 2. 

wh;le in the 
globule phase it behaves as NI”. Such a criterion allows a good empirical definition 
of the transition point. In contrast we will see that the frozen phase is charaaerized 
by a non-trivial stillcture in the probability distribution of the distances. 

The probability of a given chain Squared distance, P(S’), is defined as the normalized 
number of times rhat, dunng the course of the Monte Carlo dynamics, two protein 
chains are at distance a (we pick out one configuration in LO4 and we compute the 
distmces of all possible couples). It turns out to be the probability distribution one 
expects in a normal (replica symmetnc) phase. we plot it in the coil phase in figure 3 
for A = 1.6 and in the globule phase, for A = 3.8, in figure 4 We cannot distinguish 
any kind of structure, in the sense that the P are in this case the usual single-peaked 
distributions. In the open phase the probability distribution has a tail for large values 

much larger In the coii phase than in the globular one. Such a tail is consistently absent 
in the globuiar phase. 

We have dose simiilatioas for a few differenr reaiizztions of the vz,, . ‘k results 
for small values of E are quantitatively very similar ta those with E = 0. Fluctuations 
from one instance OF the potential to a different one are very small, and the statistical 
errors on tLe measured quantities can be reliably measured iwe use a jack-knife 
technique in order to controi fhe convergence of our error estimators). 

Increasing the strength of the disorder (at fixed p and R )  u/e find, close to a given 
value of E = E ~ ,  a tzansition to a new phase, completely different in character from 
those we have discussed before. Such a phase has all the typical features of a frozen 

In the coil phase the square of the gyration radius behaves as 

which is poh&!,v c0snect.d to Buctuat!ons !n the radius 9; which we expect to he 



phase in a spin glass, plus some bonuses we will discuss in the following, that make 
it very suitable to describe the state of a folded, biafogically active protein. 

The correlation time in the glassy phase is extremely large (we are not able to 
determine it), and the jump from the tvw phases (coil and shapeless globule) with 
reasonable correlation times to the new phase is very abrupt. The P(S*) in the new 
phase is non-trivia!, and we can observe the system surviving in a given state for very 
long times. %'e give a typical exampie (after a very long mn of =2x 10' complete 
chain updating sweeps) of P ( S 2 )  in figure 5.  In this and in the following figures N = 30, 
E =6.0 and A =  3.8. The distribution P(S2)  bas a first peak at a very small value of S, 
typical of two chain-configurations that are iu the w n e  slate, asd are very similar. 
The other part of the distribution corresponds to configurztion? which are macroscopi- 
cally different: S is non-negiigible compared to A. 

Let us discuss in some detail the dynamics in the glassy phase. In figure 6 we give 
pz as a function of the Monte Carla time, and in figure 7 the link squared length h2 

. 
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Already at such a very rough level (we will see ihat using out chain-distance criteria 
we can gather far more detailed information) we can see very long-lived structures. 
1 ne macroscopic jump in the radius survives for the order of 20 miiiion Monte Carlo 
sweeps. 

In the series of figures 8 we give the squared &stance 6' of rhe protein chains we 
have encountered in the course of the dynamics from the specific chain we indicate 
by drawing a verticai line on the selected time. We compute the chain-distance 6' from 
the considered chain to ail the chains preceding it in the (Monte Carlo) time and to 
the chains foilowing it. Obviously the distance is zero at the point specified by the 
vertical line, i.e. the chain-distaiice of a protein with itself is zero' small S means the 
two configurations are in a similar state, large 6 they are in a different state. We wam 
the reader thar these figures have to be understood in detail, since they constituee the 
main point of this wof!. All :he features we note in figure X would persisi when looking 
at the same figures done for the A chain-distances (based, as we have seen, on site 
energy differences). 

iteerabons. The chain is at this moment in a siable state: we see from this figure that 
the chain will return (twice) to the same state after more than SO million Monte Carlo 
iterations We can see that at the start we are very far from thermdl equilibrium (at 
the beginning the protein is in a transient state, at a large distance from all the 
equilibrium configurations), and after a while (as we said I5 million Monte Carlo 
sweeps) we see t k  chain from which we have decided to measure the distance 6 

Before 20 mliiion iteratlons (figure 8 ( b ) i  the chain goes into a long-iived state 
(which lasts O(2Ox IO6) iterations) where it will not return during the entire run. In 
figure X(c) the chain is in its second stable state, where it spends more than 45 million 
Monte Carlo iterations. Ii should be noticed that the chain LE visiting this state for the 
second time, and that il will come back to the same state once more. 

In figure B(d) the chain is back IO the first state. In figure 8 ( e )  it is in a transient 
state: from figure 6.  where we have given the gyration radius p2 as a function of the 
Monte Carlo time, we see that such a state is macroscopically diiEerent from the others, 

- 

O.n.sr- P < n \  ni~inr tLn om.aea.4 rl.ctenre P2 ST,..- +hp OL~;.. -Ltn.n-A -Finr ) 4  -;ll:-- 1 ' 6 " L ' Y , U ,  * " U "  LI.* "'IYY.*Y UIIIIYIII- " ll"l,l ,.iu 1.10111 " " L ~ L I I I I Y  L L ' l r l  1J I'.l'..".1 
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Figure 8. Squzred cham-derances 6' from some gwen chams (that are indmted by a 
YOrtLCBI 1" 
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and it is characterized by a different value of p In figure S( f )  the chain is back (for 
the third time) to the second state. 

A good way to proceed is to compare the chain-distance S and the link length A: 
in a globule shapeless state the typical value of 6 is larger than the distance between 
two chain sites. In contrast, in a well folded, well shaped phase S is very small (on 
the scale fixed by A )  for all the time in which the protein is in the same state. 

The main question is about the minima of the free energy. From figures 8 it is clear 
that there is, as expected, a very complex structure. There are few stable states (we 
see at  least two different states in which the chain comes back after many iterations). 
The most important point is perhaps that there are few stable states: the fact that after 
many Monte Carlo Iterations, and after visiting a completely different state (see next 
paragraph), we come back to exactly the same state, is very remarkable, and is a feature 
that is quite different from the pattem of stable state in disordered spin models (the 
recent work of [lo] points in this directionl. 

Proteins fold in one or very few stable states the behaviour of the glassy phase 
one encounters in a spin model (or in the random energy model) would not be consistent 
with such a phenomenon. In order to explain protein folding by the effect of disorder 
one has to lind few stable structures. this is what we hzve showil to happen for 
heteropolymers in random, strong enough disorder. 

In figures 9 we give the conformational pictures of proteins selected at the time- 
points from where we take the distance in figures 8. So in figure 9(a) we have the 
protein from which we take the distances in figure S(a) and so on (we gwe the three 
projections on the +-y, x-z and y-z planes: the Egures are after minimization of 6 
over roto-translations, i.e. the projecrions are, at least in principle, as  similar as they 
can be). i t  is remarkable that the two staees (which we consider stable states, since the 
chain finds them again after billions of Monte Carlo steps) are conformationally 
completely different. It is very impressive how figure 9(a )  is similar to figere 9(dj, and 
figure 9 ( c )  to figure 9(f): the intermediate configurational states are completely 
different, but the chain wmes back, after many million Monte Carlo iterations, to the 
same configuration 

We have given evidence for the existence of a glassy phase in the dynamics of 
heteropolymers. We have shown that such a phase has typical features which are 
different from those of a disordered spin model, and are due io the chain-like features 
ofthe model, and that such features are exactly what one needs in order to apply such 
a model to the description of the dynamics of piotein folding. In a forthcoioing paper 
I,/* llxrill a,.ma mnrJ ;"+-,.....,An" "I.̂..+ +I." "+-."A ^F Ai-" LA^ ..- 1.1.1 e:." YYLI.*  11'V.U lt.'Y.'.lall"il *V""L L U G  >>LLLL'"IT Y1 L11S L l C G  GI,c:&y L,,,,'I,,I~. 

we will drscuss how the states cluster, and the possibility of applying an ultrametric 
description to the states. 
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